我们研究了使用经验风险最小化训练的机器学习模型中删除用户数据的问题。我们的重点是学习算法,这些算法返回经验风险最小化和近似符合符合流式传输缩写的删除请求的近似学习算法。利用Infintesimal Jacknife,我们开发了一种在线学习算法,既是计算和内存效率又有效的。与先前的记忆有效学习算法不同,我们针对的模型可以最大程度地减少非平滑正则化机构的目标,例如常用的$ \ ell_1 $,弹性网或核量规范惩罚。我们还提供与最先进的方法一致的概括,删除能力和学习保证。在各种基准数据集中,我们的算法在先验方法的运行时间上有所改善,同时保持相同的内存需求和测试准确性。最后,我们通过证明到目前为止引入的所有近似近似学习算法在问题设置中未能在常见的超参数调谐方法(例如交叉验证)中使用的所有近似近似学习算法来打开新的询问方向。
translated by 谷歌翻译
我们重新审视使​​用公共数据来改善差异私有(DP)模型培训的隐私/实用权折衷的问题。在这里,公共数据是指没有隐私问题的辅助数据集。我们考虑与私人培训数据相同的分发的公共数据。对于凸损失,我们表明镜子血清的变体提供了与模型的维度($ p $)的人口风险保证。具体地,我们将镜像血液应用于由公共数据生成的丢失作为镜像映射,并使用私有(敏感)数据生成的丢失的DP梯度。为了获得维度独立性,我们需要$ g_q ^ 2 \ leq p $公共数据样本,其中$ g_q $是损失功能各向同性的量度。我们进一步表明,我们的算法具有天然的“噪音稳定性”属性:如果围绕当前迭代公共损失,请以$ V $的方向满足$ \ alpha_v $ -strong凸性,然后使用嘈杂的渐变而不是确切的渐变偏移我们的下一次迭代$ v $ v $比例为$ 1 / alpha_v $(与DP-SGD相比,换档是各向同性的)。在前作品中的类似结果必须使用预处理器矩阵形式的公共数据明确地学习几何图形。我们的方法也适用于非凸损失,因为它不依赖于凸起假设以确保DP保证。我们通过显示线性回归,深度学习基准数据集(Wikitext-2,Cifar-10和Emnist)以及联合学习(StackOverflow)来证明我们的算法的经验效果。我们表明,我们的算法不仅显着改善了传统的DP-SGD和DP-FedAVG,它没有访问公共数据,而且还可以改善DP-SGD和DP-FedAVG对已与公众预先培训的模型数据开始。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transformer. The former estimate a set of latent variables that represent the causal factors, and the latter governs their interaction. Causal capsules and tensor transformers may be implemented using shallow autoencoders, but for a scalable architecture we employ block algebra and derive a deep neural network composed of a hierarchy of autoencoders. An interleaved kernel hierarchy preprocesses the data resulting in a hierarchy of kernel tensor factor models. Inverse causal questions are addressed with a neural network that implements multilinear projection and estimates the causes of effects. As an alternative to aggressive bottleneck dimension reduction or regularized regression that may camouflage an inherently underdetermined inverse problem, we prescribe modeling different aspects of the mechanism of data formation with piecewise tensor models whose multilinear projections are well-defined and produce multiple candidate solutions. Our forward and inverse neural network architectures are suitable for asynchronous parallel computation.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译